Spintronics in antiferromagnets.
نویسندگان
چکیده
Magnetic domains and the walls between are the subject of great interest because of the role they play in determining the electrical properties of ferromagnetic materials and as a means of manipulating electron spin in spintronic devices. However, much less attention has been paid to these effects in antiferromagnets, primarily because there is less awareness of their existence in antiferromagnets, and in addition they are hard to probe since they exhibit no net magnetic moment. In this paper, we discuss the electrical properties of chromium, which is the only elemental antiferromagnet and how they depend on the subtle arrangement of the antiferromagnetically ordered spins. X-ray measurement of the modulation wavevector Q of the incommensurate antiferromagnetic spin-density wave shows thermal hysteresis, with the corresponding wavelength being larger during cooling than during warming. The thermal hysteresis in the Q vector is accompanied with a thermal hysteresis in both the longitudinal and Hall resistivity. During cooling, we measure a larger longitudinal and Hall resistivity compared with when warming, which indicates that a larger wavelength at a given temperature corresponds to a smaller carrier density or equivalently a larger antiferromagnetic ordering parameter compared to a smaller wavelength. This shows that the arrangement of the antiferromagnetic spins directly influences the transport properties. In thin films, the sign of the thermal hysteresis for Q is the same as in thick films, but a distinct aspect is that Q is quantized.
منابع مشابه
Anomalous low-frequency noise in synthetic antiferromagnets: Possible evidence of current-induced domain-wall motion
We investigate current-driven magnetization dynamics in synthetic Fe /Cr 10 multilayer antiferromagnets by using low-frequency voltage noise measurements. We observe suppression of the noise above a critical current density of about 2 105 A /cm2. Theoretical estimates suggest that this effect may be attributed to currentinduced motion of domain walls in the antiferromagnet. The observed critica...
متن کاملMagnetic Transport in Spin Antiferromagnets for Spintronics Applications
Had magnetic monopoles been ubiquitous as electrons do, we would have probably had a different form of matter, and power plants based on currents of these magnetic charges would have been a familiar scene of modern technology. Magnetic dipoles do exist however, and in principle one could wonder if we can use them to generate magnetic currents. In the present work, we discuss the issue of genera...
متن کاملElectrical control of the exchange spring in antiferromagnetic metals.
Electrical control of the exchange spring in antiferromagnetic metals is obtained in [Co/Pt]/IrMn Hall devices by using an ionic liquid, where the exchange spring could transfer the "force" and enable a deeper modulation depth in the IrMn. This work provides a new approach toward electrical modulation of the spin structures in metallic antiferromagnets, which should be significant in advancing ...
متن کاملSpin transport in Heisenberg antiferromagnets in two and three dimensions
We analyze spin transport in insulating antiferromagnets described by the XXZ Heisenberg model in two and three dimensions. Spin currents can be generated by a magnetic-field gradient or, in systems with spin-orbit coupling, perpendicular to a time-dependent electric field. The Kubo formula for the longitudinal spin conductivity is derived analogously to the Kubo formula for the optical conduct...
متن کاملPurely antiferromagnetic magnetoelectric random access memory
Magnetic random access memory schemes employing magnetoelectric coupling to write binary information promise outstanding energy efficiency. We propose and demonstrate a purely antiferromagnetic magnetoelectric random access memory (AF-MERAM) that offers a remarkable 50-fold reduction of the writing threshold compared with ferromagnet-based counterparts, is robust against magnetic disturbances a...
متن کاملElectrical switching of an antiferromagnet.
Antiferromagnets are hard to control by external magnetic fields because of the alternating directions of magnetic moments on individual atoms and the resulting zero net magnetization. However, relativistic quantum mechanics allows for generating current-induced internal fields whose sign alternates with the periodicity of the antiferromagnetic lattice. Using these fields, which couple strongly...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Philosophical transactions. Series A, Mathematical, physical, and engineering sciences
دوره 369 1951 شماره
صفحات -
تاریخ انتشار 2011